Aspects of Theoretical Neutrino Physics

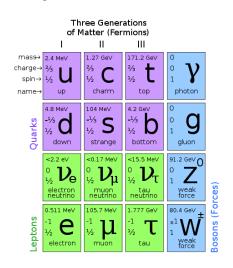
Joachim Kopp

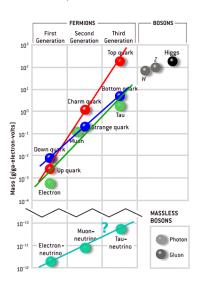
Workshop on Fundamental Physics at the Intensity Frontier Nov 30–Dec 2, 2011 in Rockville, MD

- Understanding particle masses and mixing angles
- 2 Leptonic CP violation and Leptogenesis
- Neutrinos and nuclear physics
- Neutrinos as a window to the "dark sector"
- 5 Neutrinos as astrophysical messengers
- 6 Conclusions

- Understanding particle masses and mixing angles
- 2 Leptonic CP violation and Leptogenesis
- Neutrinos and nuclear physics
- Neutrinos as a window to the "dark sector"
- 5 Neutrinos as astrophysical messengers
- 6 Conclusions

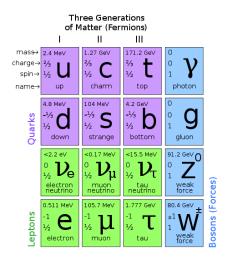
Understanding particle masses and mixing angles

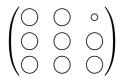

What is the origin of the three-family structure in the Standard Model?


Why are quark mixing angles so different from lepton mixing angles?

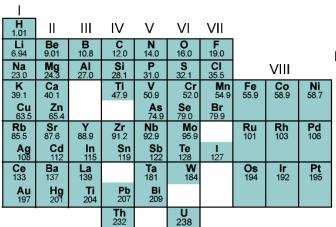
How do neutrinos get their mass?

Understanding particle masses and mixing angles


Looking at the Standard Model, we see a lot of unexplained structure.


Understanding particle masses and mixing angles

Looking at the Standard Model, we see a lot of unexplained structure.



Quark mixing:

Lepton mixing:

The Periodic Table in 1870

Dmitri Mendeleev

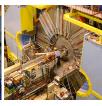
Understanding particle masses and mixing angles (2)

Fermion mass generation in the Standard Model

$$\mathcal{L}_{\text{mass}} \supset Y_u^{\alpha\beta} \tfrac{v}{\sqrt{2}} \, \bar{u}_{\alpha L} u_{\beta R} \; + \; Y_d^{\alpha\beta} \tfrac{v}{\sqrt{2}} \, \bar{d}_{\alpha L} d_{\beta R} \; + \; Y_\ell^{\alpha\beta} \tfrac{v}{\sqrt{2}} \, \bar{\ell}_{\alpha L} \ell_{\beta R}$$

+ neutrino mass terms

- We think we understand the origin of $v/\sqrt{2}$: Higgs vev
 - Energy Frontier: Look for the Higgs
- We have no idea where the structure in $Y_u^{\alpha\beta}$, $Y_d^{\alpha\beta}$, $Y_\ell^{\alpha\beta}$ comes from.
 - Intensity Frontier: Precision measurements to uncover more of the underlying structure (e.g. quark–lepton complementarity)
 - Intensity Frontier: Look for new physics with non-trivial flavor dynamics
 - ▶ Intensity Frontier: Elucidate mechanism of neutrino mass generation
- See talks by Mu-Chun Chen and Tao Han
- See experimental talks


Understanding particle masses and mixing angles (3)

Quark sector:

- b, c, K factories
- Rare decay searches
- Meson oscillations

...

Lepton sector:

- Neutrino oscillations (Mixing angles and mass squared differences)
- Direct neutrino mass measurements (Hierarchical vs. quasi-degenerate mass schemes)
- Neutrinoless double beta decay (Majorana vs. Dirac mass term)
- Charged lepton flavor violation searches
- Astrophysics and cosmology
- ...

- Understanding particle masses and mixing angles
- 2 Leptonic CP violation and Leptogenesis
- Neutrinos and nuclear physics
- Neutrinos as a window to the "dark sector"
- Neutrinos as astrophysical messengers
- 6 Conclusions

Leptonic CP violation and Leptogenesis

What is the origin of the cosmic matter—antimatter asymmetry?

Is the CP symmetry violated only for quarks or also for leptons?

Leptogenesis

A mechanism for generating a cosmic matter–antimatter asymmetry

Assume a seesaw model for neutrino mass generation

$$-\mathcal{L}_{\text{seesaw}} \supset \textit{\textbf{Y}}_{\nu}^{\alpha\beta}\, \bar{\ell}_{\alpha L} \tilde{H} \textit{\textbf{N}}_{\beta R} \; + \; \frac{1}{2} \textit{\textbf{M}}_{R}^{\alpha\beta}\, \overline{\textit{\textbf{N}}_{\alpha R}^{c}} \textit{\textbf{N}}_{\beta R}$$

via $N_{1B} \rightarrow H + \ell$

• Heavy right-handed neutrinos
$$N_R$$
 decay out of thermal equilibrium via $N_{1R} \to H + \ell$

• If $Y_{ii}^{\alpha\beta}$ is complex (CP violating), we can have

$$\varepsilon = \frac{\Gamma(N_{1R} \to H\ell) - \Gamma(N_{1R} \to H^*\bar{\ell})}{\Gamma(N_{1R} \to H\ell) + \Gamma(N_{1R} \to H^*\bar{\ell})} \neq 0$$

• Electroweak sphalerons ($\Delta(B+L)=6$) convert lepton asymmetry into barvon asymmetry

By the seesaw formula $m_{\nu} = v^2/2 \times Y_{\nu}^* M_B^{-1} Y_{\nu}^T$, complex Y_{ν} implies CP violation in low-energy observables like neutrino oscillations (barring fine-tuned cancellations) → talk by Boris Kayser

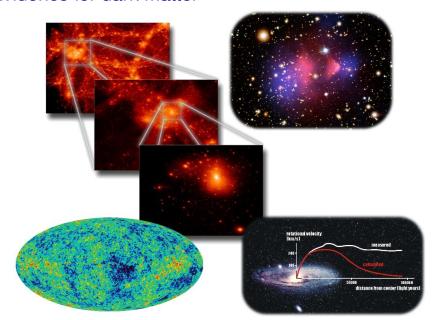
- Understanding particle masses and mixing angles
- 2 Leptonic CP violation and Leptogenesis
- Neutrinos and nuclear physics
- Neutrinos as a window to the "dark sector"
- 5 Neutrinos as astrophysical messengers
- Conclusions

Neutrinos and nuclear physics

How do neutrinos interact with matter?

Neutrinos and nuclear physics

- Neutrino scattering on nuclear targets
 - Among the weakest known interactions in particle physics
 - Probed from MeV to > TeV energies
 - ▶ Of particular interest is the O(GeV) region, where quasi-elastic scattering (possibly modified by nuclear effects), resonance production and deep-inelastic scattering contribute.
 - Nuclear physics models accurate to 𝒪(10%)
 - Data from many different target materials will help improve our understanding of nuclear physics at these energies
 - ► A crucial ingredient for oscillation experiments
 - See talks by Josh Spitz, Dave Schmitz, Bill Louis
- Matrix elements for neutrinoless double beta decay
 - ► Required for measurement of neutrino mass in $0\nu2\beta$ decay
 - Current uncertaintes are O(1)
 - ▶ Data on both $0\nu2\beta$ and $2\nu2\beta$ decay can teach us a lot about nuclear structure
 - Joachim Kopp


- Understanding particle masses and mixing angles
- 2 Leptonic CP violation and Leptogenesis
- Neutrinos and nuclear physics
- Neutrinos as a window to the "dark sector"
- Neutrinos as astrophysical messengers
- 6 Conclusions

Neutrinos as a window to a "dark sector"

Are there $SU(3) \times SU(2) \times U(1)$ -singlet particles?

If so, what are their properties?

Evidence for dark matter

Neutrinos as a window to a "dark sector"

- Are there $SU(3) \times SU(2) \times U(1)$ -singlet particles?
 - YES! Lots of evidence for Dark Matter
- Are there other "dark" particles?
 - ► A dark sector with many SM singlets?
 - ► New "dark" gauge forces?
- Neutrinos could mix with such singlet particles
 - Oscillations into light sterile neutrinos
 - Production of heavier sterile neutrinos in a neutrino production target

- Understanding particle masses and mixing angles
- 2 Leptonic CP violation and Leptogenesis
- Neutrinos and nuclear physics
- Neutrinos as a window to the "dark sector"
- Neutrinos as astrophysical messengers
- 6 Conclusions

Neutrinos and astrophysics

How do supernovae work?

How do neutrinos behave under extreme conditions?

What are the properties of dark matter?

How and where are cosmic rays accelerated?

Neutrinos and supernovae

- We want to learn about supernovae
 - Matter under extreme conditions
 - Origin of heavy elements
 - ▶ ..
- Neutrinos are crucial for the explosion mechanism
- But: Neutrino propagation through a supernova is highly non-trivial and poorly understood
 - Self-induced MSW type matter effects
 - Collective oscillations
 - **.** . . .

These are Standard Model phenomena!

- New physics would make things even more complicated
- Detecting supernova neutrinos can teach us about particle physics, astrophysics, and cosmology
- See talk by Alex Friedland

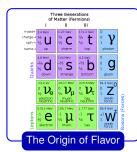
Neutrinos as astrophysical messengers

Neutrinos from dark matter annihilation

- DM capture and annihilation in the Sun
- Annihilation products usually involve neutrinos
- From these, we can learn about dark matter physics and neutrino physics

Neutrinos from cosmic ray sources

- Gamma ray bursts
- Supernova remnants
- Active Galactic Nuclei
- Microquasars


- Understanding particle masses and mixing angles
- 2 Leptonic CP violation and Leptogenesis
- Neutrinos and nuclear physics
- Neutrinos as a window to the "dark sector"
- 5 Neutrinos as astrophysical messengers
- 6 Conclusions

Conclusions: Neutrinos can tell us about ...

